/* * Based on: * https://os.mbed.com/users/kirchnet/code/Nucleo_vs_Arduino_Speed_Test/ * * This is the same whetstone code with adjustments for the * Serial.print function on the Arduino * The main loop within the procedure whetstone() is identical. * Only the output format is Arduino-specific. */ int whetstone(void); void setup() { Serial.begin(115200); Serial.println("Starting Whetstone benchmark..."); } void loop() { whetstone(); } /* * Source: http://www.netlib.org/benchmark/whetstonec * * C Converted Whetstone Double Precision Benchmark * Version 1.2 22 March 1998 * * (c) Copyright 1998 Painter Engineering, Inc. * All Rights Reserved. * * Permission is granted to use, duplicate, and * publish this text and program as long as it * includes this entire comment block and limited * rights reference. * * Converted by Rich Painter, Painter Engineering, Inc. based on the * www.netlib.org benchmark/whetstoned version obtained 16 March 1998. * * A novel approach was used here to keep the look and feel of the * FORTRAN version. Altering the FORTRAN-based array indices, * starting at element 1, to start at element 0 for C, would require * numerous changes, including decrementing the variable indices by 1. * Instead, the array E1[] was declared 1 element larger in C. This * allows the FORTRAN index range to function without any literal or * variable indices changes. The array element E1[0] is simply never * used and does not alter the benchmark results. * * The major FORTRAN comment blocks were retained to minimize * differences between versions. Modules N5 and N12, like in the * FORTRAN version, have been eliminated here. * * An optional command-line argument has been provided [-c] to * offer continuous repetition of the entire benchmark. * An optional argument for setting an alternate LOOP count is also * provided. Define PRINTOUT to cause the POUT() function to print * outputs at various stages. Final timing measurements should be * made with the PRINTOUT undefined. * * Questions and comments may be directed to the author at * r.painter@ieee.org */ /* C********************************************************************** C Benchmark #2 -- Double Precision Whetstone (A001) C C o This is a REAL*8 version of C the Whetstone benchmark program. C C o DO-loop semantics are ANSI-66 compatible. C C o Final measurements are to be made with all C WRITE statements and FORMAT sttements removed. C C********************************************************************** */ #include #include #include #include /* the following is optional depending on the timing function used */ #include /* map the FORTRAN math functions, etc. to the C versions */ #define DSIN sin #define DCOS cos #define DATAN atan #define DLOG log #define DEXP exp #define DSQRT sqrt #define IF if /* function prototypes */ void POUT(long N, long J, long K, double X1, double X2, double X3, double X4); void PA(double E[]); void P0(void); void P3(double X, double Y, double *Z); #define USAGE "usage: whetdc [-c] [loops]\n" //#define PRINTOUT /* COMMON T,T1,T2,E1(4),J,K,L */ double T,T1,T2,E1[5]; int J,K,L; int whetstone(void) { /* used in the FORTRAN version */ long I; long N1, N2, N3, N4, N6, N7, N8, N9, N10, N11; double X1,X2,X3,X4,X,Y,Z; long LOOP; int II, JJ; /* added for this version */ long loopstart; long startsec, finisec; float KIPS; int continuous; loopstart = 1000; /* see the note about LOOP below */ continuous = 0; LCONT: /* C C Start benchmark timing at this point. C */ startsec = millis(); /* C C The actual benchmark starts here. C */ T = .499975; T1 = 0.50025; T2 = 2.0; /* C C With loopcount LOOP=10, one million Whetstone instructions C will be executed in EACH MAJOR LOOP..A MAJOR LOOP IS EXECUTED C 'II' TIMES TO INCREASE WALL-CLOCK TIMING ACCURACY. C LOOP = 1000; */ LOOP = loopstart; II = 1; JJ = 1; IILOOP: N1 = 0; N2 = 12 * LOOP; N3 = 14 * LOOP; N4 = 345 * LOOP; N6 = 210 * LOOP; N7 = 32 * LOOP; N8 = 899 * LOOP; N9 = 616 * LOOP; N10 = 0; N11 = 93 * LOOP; /* C C Module 1: Simple identifiers C */ X1 = 1.0; X2 = -1.0; X3 = -1.0; X4 = -1.0; for (I = 1; I <= N1; I++) { X1 = (X1 + X2 + X3 - X4) * T; X2 = (X1 + X2 - X3 + X4) * T; X3 = (X1 - X2 + X3 + X4) * T; X4 = (-X1+ X2 + X3 + X4) * T; } #ifdef PRINTOUT IF (JJ==II)POUT(N1,N1,N1,X1,X2,X3,X4); #endif /* C C Module 2: Array elements C */ E1[1] = 1.0; E1[2] = -1.0; E1[3] = -1.0; E1[4] = -1.0; for (I = 1; I <= N2; I++) { E1[1] = ( E1[1] + E1[2] + E1[3] - E1[4]) * T; E1[2] = ( E1[1] + E1[2] - E1[3] + E1[4]) * T; E1[3] = ( E1[1] - E1[2] + E1[3] + E1[4]) * T; E1[4] = (-E1[1] + E1[2] + E1[3] + E1[4]) * T; } #ifdef PRINTOUT IF (JJ==II)POUT(N2,N3,N2,E1[1],E1[2],E1[3],E1[4]); #endif /* C C Module 3: Array as parameter C */ for (I = 1; I <= N3; I++) PA(E1); #ifdef PRINTOUT IF (JJ==II)POUT(N3,N2,N2,E1[1],E1[2],E1[3],E1[4]); #endif /* C C Module 4: Conditional jumps C */ J = 1; for (I = 1; I <= N4; I++) { if (J == 1) J = 2; else J = 3; if (J > 2) J = 0; else J = 1; if (J < 1) J = 1; else J = 0; } #ifdef PRINTOUT IF (JJ==II)POUT(N4,J,J,X1,X2,X3,X4); #endif /* C C Module 5: Omitted C Module 6: Integer arithmetic C */ J = 1; K = 2; L = 3; for (I = 1; I <= N6; I++) { J = J * (K-J) * (L-K); K = L * K - (L-J) * K; L = (L-K) * (K+J); E1[L-1] = J + K + L; E1[K-1] = J * K * L; } #ifdef PRINTOUT IF (JJ==II)POUT(N6,J,K,E1[1],E1[2],E1[3],E1[4]); #endif /* C C Module 7: Trigonometric functions C */ X = 0.5; Y = 0.5; for (I = 1; I <= N7; I++) { X = T * DATAN(T2*DSIN(X)*DCOS(X)/(DCOS(X+Y)+DCOS(X-Y)-1.0)); Y = T * DATAN(T2*DSIN(Y)*DCOS(Y)/(DCOS(X+Y)+DCOS(X-Y)-1.0)); } #ifdef PRINTOUT IF (JJ==II)POUT(N7,J,K,X,X,Y,Y); #endif /* C C Module 8: Procedure calls C */ X = 1.0; Y = 1.0; Z = 1.0; for (I = 1; I <= N8; I++) P3(X,Y,&Z); #ifdef PRINTOUT IF (JJ==II)POUT(N8,J,K,X,Y,Z,Z); #endif /* C C Module 9: Array references C */ J = 1; K = 2; L = 3; E1[1] = 1.0; E1[2] = 2.0; E1[3] = 3.0; for (I = 1; I <= N9; I++) P0(); #ifdef PRINTOUT IF (JJ==II)POUT(N9,J,K,E1[1],E1[2],E1[3],E1[4]); #endif /* C C Module 10: Integer arithmetic C */ J = 2; K = 3; for (I = 1; I <= N10; I++) { J = J + K; K = J + K; J = K - J; K = K - J - J; } #ifdef PRINTOUT IF (JJ==II)POUT(N10,J,K,X1,X2,X3,X4); #endif /* C C Module 11: Standard functions C */ X = 0.75; for (I = 1; I <= N11; I++) X = DSQRT(DEXP(DLOG(X)/T1)); #ifdef PRINTOUT IF (JJ==II)POUT(N11,J,K,X,X,X,X); #endif /* C C THIS IS THE END OF THE MAJOR LOOP. C */ if (++JJ <= II) goto IILOOP; /* C C Stop benchmark timing at this point. C */ finisec = millis(); /* C---------------------------------------------------------------- C Performance in Whetstone KIP's per second is given by C C (100*LOOP*II)/TIME C C where TIME is in seconds. C-------------------------------------------------------------------- */ Serial.write("\n"); if (finisec-startsec <= 0) { Serial.write("Insufficient duration- Increase the LOOP count\n"); return(1); } Serial.print("Loops: "); Serial.print(LOOP); Serial.print(" Iterations: "); Serial.print(II); Serial.print(" Duration: "); Serial.print(finisec-startsec); Serial.println(" millisec.");//Arduino measures time in milliseconds // KIPS = (100.0*LOOP*II)/(float)(finisec-startsec); KIPS = (100.0*LOOP*II)/(float)(finisec-startsec)*1000;//convert to seconds from milliseconds if (KIPS >= 1000.0){ Serial.print("C Converted Double Precision Whetstones: "); Serial.print(KIPS/1000.0); Serial.println(" MIPS"); } else{ Serial.print("C Converted Double Precision Whetstones: "); Serial.print(KIPS); Serial.println(" KIPS"); } if (continuous) goto LCONT; return(0); } void PA(double E[]) { J = 0; L10: E[1] = ( E[1] + E[2] + E[3] - E[4]) * T; E[2] = ( E[1] + E[2] - E[3] + E[4]) * T; E[3] = ( E[1] - E[2] + E[3] + E[4]) * T; E[4] = (-E[1] + E[2] + E[3] + E[4]) / T2; J += 1; if (J < 6) goto L10; } void P0(void) { E1[J] = E1[K]; E1[K] = E1[L]; E1[L] = E1[J]; } void P3(double X, double Y, double *Z) { double X1, Y1; X1 = X; Y1 = Y; X1 = T * (X1 + Y1); Y1 = T * (X1 + Y1); *Z = (X1 + Y1) / T2; } #ifdef PRINTOUT void POUT(long N, long J, long K, double X1, double X2, double X3, double X4) { //sprintf("%7ld %7ld %7ld %12.4e %12.4e %12.4e %12.4e\n", // N, J, K, X1, X2, X3, X4); Serial.print(N); Serial.print("\t"); Serial.print(J); Serial.print("\t"); Serial.print(K); Serial.print("\t"); Serial.print(X1); Serial.print("\t"); Serial.print(X2); Serial.print("\t"); Serial.print(X3); Serial.print("\t"); Serial.print(X4); Serial.print("\t"); Serial.println(N); } #endif